Problèmes de seuil

EXERCICE 19

Dans une entreprise, 400 employés ont réservé un repas au self de l'entreprise. Les statistiques montrent que lorsqu'un employé a réservé, 6 % ne mange pas à la cantine. On appelle *X* le nombre de personnes mangeant réellement au self

- 1) a) Montrer que X suit une loi binomiale dont on précisera les paramètres.
 - b) Déterminer l'espérance et l'écart type de X.
- 2) Le gestionnaire du self ne voulant pas gâcher de nourriture souhaite savoir le nombre minimal *k* de repas à préparer tout en restant sûr à au moins 95 % que tous les employés se présentant auront un repas.
 - a) À l'aide de la calculatrice, déterminer k.
 - b) Même question avec un seuil de 99 %.
- 1) a) On a 400 évènements indépendants et pour chacun d'entre eux on a deux isssues possibles : Succès : soit l'employé honore sa réservation avec une probabilité p=0.94 Echec : soit l'employé annule sa réservation avec une probabilité q=1 p=0.06.

X, alors associé au nombre de succès, suit donc la loi binomiale $\mathcal{B}(400; 0, 94)$.

b) On a:
$$E(X) = 400 \times 0.94 = 376$$
 et $\sigma(X) = \sqrt{400 \times 0.94 \times 0.06} = 4.8$

2) a) On doit déterminer k tel que : $p(X \le k) \ge 0.95$.

À l'aide de la calculatrice :

- on rentre la fonction : $Y_1 = \text{binomFR\'ep}(400, 0.94, X)$.
- On établit un tableau de valeur de Y_1 de valeur initiale 376 avec un pas de 1.
- On choisit la valeur de X à partir de laquelle $Y_1 \ge 0,95$ On trouve alors k=384

b) Pour
$$p(X \le k) \ge 0.99$$
, on trouve $k = 386$

X	Υı
379	0.7651
380	0.8278
381	0.8793
382	0.9194
383	0.949
384	0.9695
385	0.9828
386	0.991
387	0.9956
388	0.998
389	0.9992